In the absence of definite information about the problem to be considered, it is difficult to obtain an estimate of the total number of iterations required for the last five methods.

For our method, we obtain:

\quad Auxiliary Method	Multiplications	Additions
I. Elimination	$n^{4} / 12$	$n^{4} / 12$
II. Seidel (one iteration)	$n^{3} / 3$	$n^{3} / 3$
III. Relaxation (one iteration)	$n^{3} / 3$	$n^{3} / 3$
IV. Gradient method (one iteration)	$2 n^{3} / 3$	$2 n^{3} / 3$
V. Conjugate gradient method, symmetric		
positive definite matrix (one iteration)	$n^{3} / 3$	$n^{3} / 3$
VI. Conjugate gradient method, general ma-		n^{3}
\quad trix (one iteration)		n^{3}

3.6. Numerical Comparison. For a 10×10 determinant, we obtain the following estimates for the number of operations required for the methods discussed:

Method	Multiplications	Additions
1. Expansion in elements	$3.26 \times 10^{\mathbf{7}}$	3.63×10^{6}
2. Expansion in minors	6.23×10^{6}	
3. Chio's method	330	330
4. Tridiagonal method	1300	660
5. Auxiliary method (by means of solution of		
linear equations)		
I (one iteration)	1000	1000
II (one	330	330
III (one iteration)	330	330
IV (one iteration)	660	660
V (one iteration)	330	330
VI (one iteration)	1000	1000

John Jay Hopkins Laboratory for Pure and Applied Science
General Atomic Division of General Dynamics Corporation
San Diego, California

1. K. S. Kuntz, Numerical Analysis, McGraw-Hill, New York, 1957.
2. E. M. Grabbe, S. Ramo \& D. E. Wooldridge, Handbook of Automation, Computation and Control, v. I, John Wiley and Sons, New York, 1958.

Coefficients in Quadrature Formulas

By A. H. Stroud

The following result is well known (see, for example, Krylov [2], p. 104, or Szego [3], p. 48):

Theorem 1. If $w(x)$ is nonnegative throughout the finite or infinite segment $[a, b]$ and if the quadrature formula

$$
\begin{equation*}
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n} A_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

Received October 29, 1962.
is exact for all polynomials of degree $\leqq 2 n-2$ then the coefficients $A_{i}(i=1,2, \cdots, n)$ are all positive.

Here the x_{i} are assumed to be real numbers. The usual method for proving this theorem is to obtain the following representation for the A_{i} :

$$
A_{i}=\int_{a}^{b} w(x)\left[\frac{\omega(x)}{\left(x-x_{i}\right) \omega^{\prime}\left(x_{i}\right)}\right]^{2} d x \quad(i=1,2, \cdots, n)
$$

where $\omega(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$. If $w(x)$ changes sign then this representation still holds, but in general we are not able to determine from it how many of the A_{i} are positive and how many negative.

In Theorem 2 below we give a method for determining the number of positive and negative A_{i} in (1) for a more general weight function.

In the remainder of this note we assume that $w(x)$ is any function for which the moments

$$
c_{i}=\int_{a}^{b} w(x) x^{i} d x \quad(i=0,1,2, \cdots)
$$

are defined and finite and for which the moment matrix

$$
C_{n}=\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n-1} \tag{2}\\
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & \vdots & \vdots & \vdots \\
c_{n-1} & c_{n} & \cdots & c_{2 n-2}
\end{array}\right]
$$

is nonsingular.
Theorem 2. If C_{n} is congruent (in the terminology of Gantmacher [1], p. 296) to a diagonal matrix with p positive and q negative diagonal elements $(p+q=n)$-or equivalently, if C_{n} has p positive and q negative eigenvalues-then a quadrature formula (1) which is exact for all polynomials of degree $\leqq 2 n-2$ has p positive and q negative coefficients.

Proof. The condition that (1) be exact for all polynomials of degree $\leqq 2 n-2$ is equivalent to the equations

$$
c_{k}=A_{1} x_{1}^{k}+A_{2} x_{2}^{k}+\cdots+A_{n} x_{n}^{k} \quad(k=0,1, \cdots, 2 n-2)
$$

This system of equations may be written as the following matrix equation:

$$
X_{n}{ }^{T} D_{n} X_{n}=C_{n}
$$

where C_{n} is the symmetric moment matrix (2) and

$$
D_{n}=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & A_{n}
\end{array}\right] \quad X_{n}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}{ }^{2} & \cdots & x_{1}{ }^{n-1} \\
1 & x_{2} & x_{2}{ }^{2} & \cdots & x_{2}{ }^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}{ }^{2} & \cdots & x_{n}{ }^{n-1}
\end{array}\right]
$$

If C_{n} is congruent to a diagonal matrix with p positive and q negative diagonal elements then there is a nonsingular $n \times n$ matrix B for which $B^{T} C_{n} B$ is a diagonal matrix of the stated form. Since

$$
\left(X_{n} B\right)^{T} D_{n}\left(X_{n} B\right)=B^{T} C_{n} B
$$

then D_{n} is also congruent to a diagonal matrix of the stated form. From the law of inertia ([1], p. 296-298) D_{n} also has p positive and q negative elements and the proof is complete.

From this result Theorem 1 follows as a corollary since, if $w(x)$ is nonnegative, C_{n} is positive definite and therefore congruent to a diagonal matrix with n positive elements.

As a simple example consider a 2-point quadrature formula of the form

$$
\begin{equation*}
\int_{-1}^{1}(3-5|x|) f(x) d x \simeq A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right) \tag{3}
\end{equation*}
$$

For this weight function the monomial integrals are $c_{0}=1, c_{1}=0, c_{2}=-1 / 2$, $c_{3}=0$. There are no real values of x_{1}, x_{2} for which (3) can be made exact for $f(x)=1, x, x^{2}, x^{3}$. There are, however, an infinity of such formulas with real x_{1}, x_{2} which are exact for $f(x)=1, x, x^{2}$ and Theorem 2 still applies. One such formula is

$$
\begin{aligned}
x_{1}=\frac{1}{2} & x_{2}=1 \\
A_{1}=2 & A_{2}=-1
\end{aligned}
$$

Computation Center
University of Kansas Lawrence, Kansas

1. F. R. Gantmacher, Matrix Theory, Vol. 1, Chelsea, New York, 1959.
2. V. I. Krycov, Approximate Calculation of Integrals, Macmillan, New York, 1962. (Translated from Russian).
3. G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., v. 23, 1959.

A Partition Problem

By M. H. McAndrew

1. Introduction. The following theorem is proved: Given integers a, b, c, d, each $\geqq 2$, then either there exist integers m, n with $|m-n| \leqq 1$, a partition of a into m parts of which each part is coprime to b, and a partition of c into n parts, each part coprime to d; or the same conclusion holds with the roles of a and b reversed and the roles of c and d reversed.

This question arises in the investigation of the minimum length of input strings required to distinguish two partial automata. Elgot and Rutledge [1] deduce an upper bound for the length of such strings and by using the theorem quoted above show that this upper bound can be attained. In Section 4 we demonstrate by an example that the restriction " $a, b, c, d \geqq 2$ " cannot be relaxed.
2. Preliminary Lemmas. In the sequel, all variables are to be taken as strictly positive integers.

Lemma 1. If $l>1, l=\prod_{i=1}^{r} P_{i}$ where the p_{i} are distinct primes, and if m is even, then there is an a such that

$$
\begin{aligned}
(a, l) & =1 \\
(m-a, l) & =1
\end{aligned}
$$

Received November 16, 1962.

